Intruder Data Classification Using GM-SOM
نویسندگان
چکیده
This paper uses a simple modification of classic Kohonen network (SOM), which allows parallel processing of input data vectors or partitioning the problem in case of insufficient resources (memory, disc space, etc.) to process all input vectors at once. The algorithm has been implemented to meet a specification of modern multicore graphics processors to achieve massive parallelism. The algorithm pre-selects potential centroids of data clusters and uses them as weight vectors in the final SOM network.In this paper, the algorithm is used on a well-known KDD Cup 1999 intruders dataset.
منابع مشابه
Study of Techniques used for Medical Image Segmentation and Computation of Statistical Test for Region Classification of Brain MRI
This paper explores the possibility of applying techniques for segmenting the regions of medical image. For this we need to investigate the use of different techniques which helps for detection and classification of image regions. We also discuss some segmentation methods classified by researchers. Region classification is an essential process in the visualization of brain tissues of MRI. Brain...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملBreast Cancer Analysis using Independent Component Analysis (ICA) and Self Organizing Map (SOM)
A method for discrimination and classification of breast cancer dataset with benign and malignant tissues is proposed using Independent Component Analysis (ICA) and Self Organizing Map (SOM). The method implement ICA for preprocessing and data reduction and SOM for data analysis. The best performance was obtained with ICASOM, resulting in 98.8% classification accuracy and a SOM result is 94.9%.
متن کاملUn-supervised MR images segmentation using SOM and anisotropic diffusion filter
The primary aim in brain image segmentation is to perform partition a given brain image into different regions which are homogeneous with some criterion. Magnetic resonance image (MRI) segmentation plays crucial role in accurate representation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) provides a way to identify many brain disorders, such as Alzheimer’s disease, schizo...
متن کامل